Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina.

نویسندگان

  • A Gerstner
  • X Zong
  • F Hofmann
  • M Biel
چکیده

Cyclic nucleotide-gated (CNG) channels play a key role in olfactory and visual transduction. Native CNG channels are heteromeric complexes consisting of the principal alpha subunits (CNG1-3), which can form functional channels by themselves, and the modulatory beta subunits (CNG4-5). The individual alpha and beta subunits that combine to form the CNG channels in rod photoreceptors (CNG1 + CNG4) and olfactory neurons (CNG2 + CNG4 + CNG5) have been characterized. In contrast, only an alpha subunit (CNG3) has been identified so far in cone photoreceptors. Here we report the molecular cloning of a new CNG channel subunit (CNG6) from mouse retina. The cDNA of CNG6 encodes a peptide of 694 amino acids with a predicted molecular weight of 80 kDa. Among the CNG channel subunits, CNG6 has the highest overall similarity to the CNG4 beta subunit (47% sequence identity). CNG6 transcripts are present in a small subset of retinal photoreceptor cells and also in testis. Heterologous expression of CNG6 in human embryonic kidney 293 cells did not lead to detectable currents. However, when coexpressed with the cone photoreceptor alpha subunit, CNG6 induced a flickering channel gating, weakened the outward rectification in the presence of extracellular Ca(2+), increased the sensitivity for L-cis diltiazem, and enhanced the cAMP efficacy of the channel. Taken together, the data indicate that CNG6 represents a new CNG channel beta subunit that may associate with the CNG3 alpha subunit to form the native cone channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel.

Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMP or cGMP binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in...

متن کامل

A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP.

Sensory transduction in olfactory neurons is mediated by intracellular cAMP, which directly gates a nonselective cation channel. A cDNA encoding a cyclic nucleotide-gated (CNG) ion channel subunit (rOCNC1) has been cloned previously from rat olfactory epithelium. However, differences between the functional properties of rOCNC1 and the native olfactory CNG channel suggest that the native channel...

متن کامل

Subunit Stoichiometry of Cyclic Nucleotide-Gated Channels and Effects of Subunit Order on Channel Function

Cyclic nucleotide-gated (CNG) ion channels are multimeric structures containing at least two subunits. However, the total number of subunits per functional channel is unknown. To determine the subunit stoichiometry of CNG ion channels, we have coexpressed the 30 pS conductance bovine retinal channel (RET) with an 85 pS conductance chimeric retinal channel containing the catfish olfactory channe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2000